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ABSTRACT

The old problem of light scattering from a perfectly conducting surface

is addressed. An electromagnetic field is incident upon the boundary, where

it induces a charge and current distribution. These charges and currents

emit the reflected fields. A set of equations for the charges and currents

on the surface is derived by eliminating the E- and B-fields from Maxwell's

equations with the aid of the appropriate boundary conditions. An explicit

and general solution is achieved, which reveals the confinement and

redistribution of the charge and the current on the surface by the external

field. Expressions are obtained for the surface resolvents, or the

redistribution matrices, which represent the surface geometry. Action of a

surface resolvent on the incident field evaluated at the surface, then

yields the charge and current distributions. The Faraday induction appears

as an additional contribution to the charge density. Subsequently, the

reflected fields are expanded in spherical waves, which have the surface-

multipole moments as a source. Explicit expressions are presented for the

surface-multipole moments, and it is pointed out that charge conservation on

the surface sets constraints on these moments. The results apply to

arbitrarily-shaped surfaces and to any incident field. For a specific

choice of the surface structure and the external field, the solutions for

the charge, the current and the reflected fields are amenable to numerical

evaluation.
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I. INTRODUCTION

The study of chemistry and physics near a surface has developed rapidly

during the last decade. Investigations range from classical processes like

periodic deposition, 1 image formation
2 -4 and dispersion of plasmon waves

5 -22

to quantum mechanical issues as Raman scattering of intense laser

light,23,24 atomic fluorescence near a rough surface,25,26 the coupling of

an atomic dipole to surface polaritons and cooperative emission processes

28
near a conductor. It appears, however, that besides these well-

established theories, even the simplest problem --light scattering from an

arbitrarily shaped surface-- is not yet completely tractable. Early

approximations like the Rayleigh-Fano expansion (neglection of multiple

reflections) or the small-roughness limit provide sufficient understanding

of the induced effects on a boundary by incident fields, but exact solutions

in the form of general expressions for the scattered fields and the surface

waves are not available at present. Contemporary closed-form solutions

pertain only to polarized plane waves, incident upon gratings with well-

defined geometries, like square or sinusoidal wells. The results always

rely on the periodicity of the surface roughness, which implies the

applicability of Fourier-series expansions, or a numerical solution of the

extinction theorems, as they exist in many phrasings. 7 ,8 ,11 In this paper

we consider a metallic surface, which is illuminated by an externally-

applied electromagnetic field with an arbitrary time-dependence and spatial

distribution. The surface is not assumed to be periodic, and our results

apply equally well to a closed surface or to assemblies of surfaces, as for

*- example a sphere near a grating. We achieve closed-form solutions of

Maxwell's equations for the charge and current distributions on the surface

and for the reflected fields, although at the expense of the assumption that
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the metal has a perfect conductivity. The structure of the expressions is,

however, quite transparent, and it might be expected that a proper account

of the finite conductivity yields similar results.

II. THE FIELD EQUATIONS

The time-development and the spatial distribution of the charge density

P(r,t), the current density J(r,t), the electric field E(r,t) and the

magnetic field B(r,t) are governed by Maxwell's equations. If we adopt a

Fourier transform of the real fields

I
0

V and similarly for the other three fields, then the field equations read

V-c(r)E(r)] = p(r), (2.2)

VoB(r) 0, (2.3)

VxE(r) iwB(r) = 0, (2.4)
.- S

Vx("j(r) B(r) + iwc(r)E(r) = j(r), (2.5)
0,..

where we have simplified the notation by writing E(r) rather than L(r,w).

The frequency dependence of the fields and of E(r) and p(r) will be

suppressed throughout this paper.

We shall suppose that the entire space is occupied by two kinds of

media, perfect conductors and perfect insulators, which are separated by

boundaries. The set of all boundaries will then be referred to as the

surface. Within each medium the dielectric constant £(r) and the

permeability p(r) will be assumed to be r-independent, but across the

surface £(r) and p(r) are discontinuous. Conductors are specified by a

S -o " . ". % " . % % - . . " . . . % - . . % % " , % "
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relation like j(r) = yE(r), y>O, and the assumption of perfect conductivity

implies the limit y- . Since the current density j(r) should remain finite,

we obtain E(r) = 0 everywhere in the conductor. From Eq. (2.2) we then find

p(r) = 0, and Eq. (2.4) yields B(r) = 0, under the restriction w 0 0. In

this paper we will exclude the trivial static case w = 0. Finally, Eq.

(2.5) gives j(r) - 0, and hence Maxwell's equations in the conductor reduce

to

E(r) 0, B(r) 0, p(r) 0, J(r)0. (2.6)

Around a point r on the surface the fields are discontinuous.

Application of Gauss' theorem on (2.2) and (2.3) and of Stokes' theorem on

(2.4) and (2.5) enables us to rewrite the equations in the vicinity of the

surface as

E(r + ) = - a(r)n(r), (2.7)

B(r + ) = pi(r)xn(r). (2.8)

Here o(r) and i(r) are the surface charge and current density, respectively,

and n(r) represents the unit normal vector in r on the surface, with the

convention that it points from the conductor to the dielectric. We have

introduced the notation r to indicate a point in the dielectric and close

to r. Explicitly, we write

r + n(r)6 with 6+0. (2.9)

We note that Eqs. (2.7) and (2.8) combine the four Maxwell equations in r on

the surface, and that they contain four unknown fields.

The dielectric is presumed to exhibit no conductivity at all, so it can

be specified by j - yE with y-0 . This implies j = 0, and from charge

conservation (V'j = iwp) we find p = 0, since we required w 0 0. Hence, all

r...-.-~~~~.......-. ........ . . ....... ,.-.......... . .. ,.......,_ _ ___
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charges and currents, if any, are situated on the surface as a(r) and i(r).

The electric and magnetic fields in the dielectric are generated by o(r) and

i(r), and they contain the incident fields. This notion allows us to write

Maxwell's equations for a point r in the diLlectric as

p(r) 0, (2.10)

J(r) 0 0, (2.11)

Z~r Zr) nc  -w4--Gi-r')G rr')

E(r) - E(r) - fdA'(r')VG(r,r') + 41 i(r')G(r,r), (2.12)

B(r) - B(r)inc = dA'i(r')xVG(r,r'), (2.13)

where the integrals run over the complete surface. This representation

involves the Green's function of the wave equation

G(r,r') = IE-'l exp(ikIE-r'j), (2.14)

and its gradient

-3VG(r,r') = (r-r')IE-r' (ikr-rI' ' -1)exp(ikr-r'I), (2.15)

which contain the wave number k = (l)1/2 W. We have to solve the set (2.12)

and (2.13) for o(r), i(r), E(r) and B(r), and Maxwell's equations (2.7) and

(2.8) on the surface can be considered as the boundary conditions.

III. ELIMINATION OF THE FIELDS

Maxwell's equations in the dielectric medium are basically two

equations with four unknown fields, but we can eliminate the radiation

fields E(r) and B(r) with the boundary conditions (2.7) and (2.8). To this
+

end we take r in (2.12) and (2.13) as r from (2.9), and then substitute the

boundary values for E(r + ) and B(r +). This procedure leaves us with a set of

two equations for o(r) and i(r). The appearance of G(r ,r') and V +G(r r')
- -- - - r - -
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in the integrands of (2.12) and (2.13) is not convenient since it involves

+
points r , which are not situated on the surface. It will turn out to be

*more practical to have equations in which the Green's function connects only

points of the surface, rather than a point on the surface to a point in the

+
dielectric. However, care should be exercised in replacing r by r, because

the integrals are discontinuous across the surface. If we take the limit

r -r properly (see Fig. 1), we obtain, for instance,

++
and we observe that replacing r by r requires that we should add the term

292ni(r)xn(r). It was already pointed out by Maradudin that integrals of

this kind appear to have a finite contribution from a single point. This

feature can however also be regarded as resulting from the discontinuity of

the fields across the surface. Critical comments on this issue have also

been made by Agarwal12 in a slightly different context.

With the explicit forms of G(r,r') and its gradient, as they are given
+

by (2.14) and (2.15), we can evaluate the limit r -r, which yields the set

of equations

c(r)n(r) 4 dA'c(r')VG(r,r') + -w idA i(r')G(rr')

+ 2E(r)
inc (3.2)

i(r)xn(r) = ?.dA'i(r')xVG(r,r') + 2p- B(r) inc (3.3)

for o(r) and i(r). We can write o(r) and i(r) in the integrands as

o(r) =  n(r).(a(r)n(r)), (3.4)

i(r) = n(r)x(i(r)xn(r)), (3.5)
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since i(r) is parallel to the surface, which shows that Eqs. (3.2) and (3.3)

are essentially a set of equations for the vector fields a(r)n(r) and

i(r)xn(r) on the surface.

Equation (3.3) for i(r)xn(r) has the form of an inhomogeneous Fredholm

equation of the second kind, where the external field 2p-I B(r) in c is the

inhomogenety. In the same fashion, Eq. (3.2) has 2EE(r) inc (and the current

term) as an inhomogeneous part. Hence the incident fields can be regarded

as the source terms of these equations. In this sense o(r) * 0 and i(r) x 0

are a result of the presence of the driving field, so the charges and the

currents are confined on the surface by the field. If there is a net charge

on the surface, this mechanism might also be conceived as a redistribution

process. Equations (3.2) and (3.3) resemble the extinction theorem for the

analogous problem of scattering of an incident field from a dielectric

grating. The extinction theorem is, however, a homogeneous equation, and

its solvability condition is equivalent to the dispersion relation for

surface polaritons.

IV. REPRESENTATION OF THE SURFACE

Ordinary Fredholm equations are single-variable equations for a

function on the complex plane, and they can be solved by an expansion of the

function onto a suitable complete set. Our equations for o(r)n(r) and

i(r)xn(r) are three-dimensional and surface-related equations for a vector

field, so we have to modify the standard techniques slightly. In order to

accomplish this, we introduce spherical coordinates (r,8,0) with respect to

an arbitrary origin, and we will abbreviate the direction 6,0 by the single

variable Q. Then the assembly of all points r, which constitute the

surface, can be represented by a set of functions () The &W will

indicate the distance from the origin to a point r on the surface, in the

- .- '. -:.y . '.-.- ' - * .* -'.- '. %' - - - ..- ,* - -I" '"; "-".." Sd-", A/" 
' ' ' ' - '

' ' " ' 5"" ' ' ' ' ' i ' " ,
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direction 0, while the subscript A accounts for the multiplicity (see Fig.

2). In this fashion, the surface is divided in regions, numbered by A,

where its shape is defined by a function E(Q)., which determines uniquely

the spherical coordinates (r,8,O) - ( (8,,)A,8, ) of a point r in this

region. The shape-functions E(Q) will be assumed to be given, and

therefore we can represent a point on the surface by its surface-coordinates

(A,Q) rather than by its spherical coordinates (r,Q). We will use A as a

subscript and Q as a variable.

The measure dA(Q) and the direction n(Q) of the surface at a given

point (X,11) are fixed by its shape &(Q)A" For instance, the infinitesimal

surface area at (A,Q) is given by

dA(Q)) = f(Q) dil (4.1)

with

2 ( a( 2 + 1 (22)/2
f()) =(Q) { -) + + (4.2)

sin a

in terms of the infinitesimal surface area dQ = sined~do of the unit sphere.

Hence the function f() A accounts for the deviation of the surface curvature

from the curvature of a sphere, and with the aid of (4.1) we can transform a

surface-integral over the region A into an integration over a part of the

unit sphere. We note that not every direction 0 for a given X corresponds

to a point on the surface. It will turn out to be convenient to extend the

definition (4.1) of f(P) as
A

f(Q = 0 if 11 does not correspond to a point on

the surface in region A. (4.2)

Then we can write the surface integrals as

......................................
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r v r
JdA... Odff(l) (4.3)

where the integrals now run over the complete unit sphere for every A. This

construction will enable us to apply the general theory of expanding vector

fields on a sphere.

V. EXPANSION OF THE FIELDS

Since we are using spherical coordinates, the spherical harmonics

Y(a),E supply a suitable complete set on the unit sphere for an expansion of

the magnitude of a vector field. The direction of a vector will be expanded

onto a space-fixed set of three unit vectors, denoted by eT, which is, for

instance, the Cartesian set ex, ey, e z or the spherical set e+it !0' !_1l

Then the vector fields Y(Q) e constitute a complete set on the unit sphere

for an expansion of an arbitrary vector field.

It is our aim to solve Eqs. (3.2) and (3.3) for o(r)n(r) and i(r)xn(r).

We thus start with an expansion of these fields,

f(Q),o01)'n(Q)A = Sg mTA Y (Q)e (5.1)

f(Q) t() xn(O)= I I Y01)e (5.2)

and note that we have included a factor f() on the left-hand side. This
A

is necessary, since otherwise the left-hand side of Eqs. (5.1) and (5.2)

would not be properly defined for every 11. The driving, incident fields

E(r) in c , B(r) in c in Eqs. (3.2) and (3.3) enter only through their value on

the surface, so that we can expand them on the surface set according to

f(O) AE(Ql) in  = MXY(Q)eme (5.3)

A- O inc B Y(O) e. (5.4)

AA A)BMT BM Qm-t

-,.- .... ... .-.. . .. . . . . .Ad
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The expansion coefficients for the incident fields then follow from the

inverse relation

E - fdfif() E()ince Y() * (5.5)9tm.TA A-. A -T E~M

B.~k fdlfO A c * YO*m (5.6)

and the appearance of f(Q) in the integrands reflects that we actually have

integrals over region A of the surface. This illustrates that f( )Y e

can be considered as a complete surface set for the expansion of a vector

field on the surface. Note that we allow e to be complex, which is the
-T

case for a spherical set.

VI. THE CHARGE AND THE CURRENT DISTRIBUTIONS

It is straightforward to rewrite Eqs. (3.2) and (3.3) for o(r)n(r) and

i(r)xn(r) in terms of their expansion coefficients. We obtain

(R(2 ) . .6 )S . . ,A
"m'tTf.i"'r'A

iwc R ( 3 )  I - 2EE 9MTA, (6.1)
tim'T'A' EmX, 'm 'T' A'

(R - 6 6 6 )1
tmTAkm'M'T'A' EC'- ' m' tt' AA' Cm''A'

-2p'B1imtC ,  (6.2)

which are two coupled inhomogeneous linear equations for the surface charge

S and the surface current I The expansion coefficients E andtint A fEmtA tnitA
B EmC for the external fields are supposed to be given. The set (6.1) and

(6.2) also involves three R-matrices, with matrix elements

R = Y(d2fd'f))(O)*ZmTA,E'm'T'A Tm Cim'

(ex(n(').xe )}'G(Qn'), (6.3)



2)
R*

mTAZ'm'T'A' 2)'M m

e(n( ')A Ixe )G(OI.Q')AA., (6.5)

where we have written G(Q,Q') , for the Green's function, which connects

the points (AJ) and (A'A') of the surface. We emphasize that these R-

matrices depend only on the geometry of the surface, and not on the external

fields. Prescription of the shape of the surface determines the R-matrices.

Recall, however, that the R-matrices depend on the frequency w through the

Green's function, but this is merely a parametric dependence and independent

of the external field.

The expansion coefficients S mEX can always be arranged in a one-

dimensional array, considered as a vector, and similarly R1)
, R(2) and R( 3 )

can be regarded as two-dimensional matrices. Then we can write (6.1) and

(6.2) as

(R(2)-)S - iwctiR( 3 )l - 2cE, (6.6)

(R-1-I)I - -2p'I B, (6.7)

where we have also adopted a vector representation for the driving fields.

The solution of (6.6) and (6.7) is immediately found to be

S = 2c ( E " 1 - B}, (6.8)

1-R (2) B-R (

I M B.(6.9)
9. 1-R
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which expresses the charge density S and the current density I explicitly in
P.

the externally applied fields E and B and the surface-shape matrices

(2 )  (3)R~2  and R

For vanishing external fields, e.g., E - 0 and B - 0, the charge and

current distributions also vanish, as can be seen explicitly from Eqs. (6.8)

and (6.9). Hence the charges and currents are indeed confined to the

surface by the external fields. Remember that we have excluded the static

case w - 0, for which we can have charges on a surface without external

fields. Furthermore, we can identify the resolvents (1-R(2)) "1 and (1-

R " as the operators which account for the redistribution of the charges

and currents, respectively, as resulting from the Lorentz force between

charges and between currents. The coupling of charges and currents, which

(3)_is the Faraday induction, is incorporated in the R -matrix.

VII. THE REFLECTED FIELDS

The incident field induces charges and currents on the surface, and

these oscillating charges and currents emit radiation, which are the

reflected fields. In this section we express these fields in terms of the

expansion coefficients SmA and ItmA, as they are given explicitly in the

previous section.

In Eq. (2.12) we expressed the reflected electric field E(r)-E(r)inc in

inc
terms of o(r) and i(r), and similarly B(r)-B(r) in terms of i(r). With

(3.4) and (3.5) we can rewrite these equations in a way that o(r)n(r) and

i(r)xn(r) are the source fields, and then we can apply (5.1) and (5.2) in

order to find an expansion on the spherical set. However, the resulting

expressions are not transparent, since they will involve the Green's

function and its gradient. In order to achieve a more comprehensible

result, we expand the Green's function on the spherical set. We write 2 3

*a*p***a.-.*** * ---... *.-.....- - ,|. j V -
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G(r,r ) - rik h(l)(k&(') t Y(O')Lm J(kr) IY(P) I,(71

em

where h( and j are spherical Bessel functions. Here the convention is

that we choose the origin of our coordinate system in the dielectric, and in

.4. such a way that the inequality

> r (7.2)

holds for every (X,n). The vector r is the position in the dielectric,

where we wish to evaluate the reflected fields. The expansion coefficients

SfmTA and I m A depend on the position of the origin, so both the charge and

current distributions and the reflected fields must be evaluated with

respect to the same coordinate system. Furthermore, restriction (7.2) must

hold in order to apply the series expansion (7.1) of the Green's function.

For a given r, this can always be arranged.

The solution for the fields can be cast in an appealing form by the

introduction of the source-term vectors

S(A) S(7.3)

T

(;k~ A (7.4)

-flm LMTA-T*
T

-(k) I(A)
In view of (5.1) and (5.2), these S and Im are just the expansion

coefficients of f(n) o() n(n) and f(n) i(n) xn(O) after an expansion of
4A X - AA A A

these fields onto the set of spherical harmonics, but without a

decomposition along the basis vectors e . Furthermore, we define the vector
-T

(k) • (1)( ( )) ,( )(7 5
,A ' = -idf(n)AY(n) mY(n) m' h (7.5)

which is a surface integral over the region A. It is the integrated normal

(M)
vector n(Q) times the appropriate weight-functions. This vector

depends only on the shape of the surface. After these preliminary
I'.
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definitions, we can write for the reflected fields

Vm

-iwpk I  ' ,mX~Ij J(kr) ,Y(f2)* (7.6)

IM-W Emro, em L Vm'inc A
E(r)-E(r) pk pX -I )xjk), *(7)

f.m9A .nmS

itim'mA

These explicit expressions for the fields that are emitted by the surface

charge and current distributions exhibit a clear separation between the

source terms S and I and the redistribution, due to the surface

geometry, which is accounted for by the vector pThe spatial

distribution is represented as an expansion in the spherical waves

j(kr) Y(Q) IM and Vj(kr) zYEm(1)*.

VIII. SURFACE MULTIPOLES

We can eluciate the significance of the expansions (7.6) and (7.7) for

the reflected fields by the introduction of the surface multipoles. To this

end we define the multipolar moments of the charge and the current

- distributions as

k-m (m ) 5(A) (8.1)

pkj (A) (A

where C is a scalar and J is a vector. These multipolar moments

9-M -E~M

*represent the charge and current distribution of the complete surface, not

just in one region A. The emitted fields now attain the form

*E(r)-E(r)in - Cf Vj(kr)f.Y01)*~ iw 1  * (8.3)Y()1
=,Em • - 'M'E
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inc *
B(r)-B(r) - J xVj(kr) Y(I)Em, (8.4)

which greatly resembles the multipole expansion of the fields emitted by a

charge and current distribution in a restricted region of space. The

distinction is of course that the source terms CLE ahd J here gain

contributions from everywhere in space, rather than from a localized area.

This results effectively in an exchange of the spherical Bessel function

h(1)(kr)Z with j(kr)I in the expansion of the Green's function.

The surface multipolar moments C and J are not independent. Tron'

the fact that the fields obey Maxwell's equations, as they do by

construction, it follows that they are subject to some constraints.

From V.(E(r)-E(r) inc) = 0 we readily derive the relation

L-1

5.-E t- I
f =-(f.-1) f-,J-

t++
+" "' (fmI + )t+1J.e* (8.5)

,f-L+ =-(E+I) T -+ , T

for a spherical basis set e . Here (EmnltIf±1) denotes a Clebsch-Gordan
.- T

coefficient. The constraint (8.5) can be considered as the surface-

integrated form of charge conservation (V.J = iwp) for the surface charge

density o(r).

IX. CONCLUSIONS

We have studied the charge and current distributions on the boundary of

a perfect conductor with a dielectric, as they are cconfined and

redistributed there by an externally applied electromagnetic field. The

*" surface was allowed to have an arbitrary shape, and we did not impose any

."..d . +"..""""''.'' . '< " . '". '"7 '". ." ' + e"" ." .. '' +""" +' +" . + " " ." ' ' " £
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periodicity condition. We obtained closed-form and exact expressions for

So(r) and i(r) everywhere on the surface. This was accomplished by deriving

a set of inhomogeneous Fredholm equations of the second kind for o(r)n(r)

and i(r)xn(r) from Maxwell's equations, and subsequently solving these

equations by an expansion on a discrete spherical set of basis vector

functions. The solution involves surface-structure matrices, the R-

matrices, which are independent of the incident field. It appears that an

operation of a resolvent (1-R) °I on the vector representation of the

impinging field on the surface yields the charge and current distributions.

The Faraday induction between the E- and the B-fields gives rise to a

coupling between the equations for a(r)n(r) and i(r)xn(r). and it was

accounted for by the matrix R

Next, the structure of the fields, which are emitted by the oscillating

charges and currents, was examined. The solution was cast in the form of a

spherical multipolar expansion, and the multipolar moments were identified

*" explicitly in terms of the solutions for c(r) and i(r). The effect of the

surface geometry could be incorporated entirely by the application of a
(A) I diini a

surface-integrated normal-direction matrix ptA'm' In addition, it was

shown that the multipolar moments for the charge and current distributions

are related, which reflects the charge conservation on the surface.
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FIGURE CAPTIONS

+

Figure 1. Geometry for the evaluation of the limit r +-r. Around r on

the surface, we divide the surface into an infinitesimal circle of radius R,

and -he rest of the surface. Then the integrals are split up accordingly.

The normal vector points from the surface into the dielectric and is
+ +

multiplied by 6>0. We denoted r -r' by a and r-r' by b. The limit r -r

implies R>6>0 and R-O. It appears that an integral over the small circle

remains finite whenever the gradient of the Green's function occurs in the

integrand. This gives rise to the first term on the right-hand side of Eq.

(3.').

Figure 2. Illustration of the surface multiplicity. From the origin 0

in the direction 11, we find points on the surface which have

a distance &(1), &(0)2 0... to 0. Therefore, a description

of the surface in spherical coordinates requires a set of

functions &(Q) A *

I%
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